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SUMMARY 

A br i e f  review of the Ikenberry-Truesdell method of solut ion of the  
Boltzmann equation i s  given, i n  which emphasis is placed upon the proce- 
dure ca l led  Maxwellian i t e r a t ion .  Corrections t o  the various i t e r a t i o n s  
are made. This approach is then applied t o  the problem of shock-wave 
s t ruc ture .  A series solut ion of the  type used by Grad f o r  h i s  equations 
and by Talbot and Sherman f o r  the Chapman-Enskog equations is  used t o  
f i n d  the veloci ty  and temperature prof i les  f o r  a steady, plane, shock 
wive i n  an idea l  gas of Maxwellian molecules. 
n i f i can t ly  d i f f e ren t  from the  Navier-Stokes soiuiioii of the sme case; 
The advantage of t h e  present method o f  solut ion of t he  t r ans fe r  equation 
l ies  i n  the fact that the form of the d i s t r ibu t ion  function need not be 
specif ied.  

The r e s u l t s  are not s ig-  

INTRODUCTION 

The Boltzmann integrodifferent ia l  equation forms the  bas i s  of the  
c l a s s i c a l  k ine t i c  theory of gases. Its modern, rigorous der ivat ion is 
the  work of Kirkwood and G r a d  has discussed i t s  va l id i ty .  Both of these 
approaches are w e l l  discussed i n  references 1 and 2 and a more elementary 
treatment is  given by Patterson i n  reference 3 .  The unknown function i n  
the  Boltzmann equation i s  the  d is t r ibu t ion  function F(x, c , t )  which 
gives the  number of molecules per  u n i t  volume of phase space a t  posi t ion 
x and time t with veloci ty  7. Except f o r  t h e  simple Maxwell d i s t r i -  
bution function, only approximate solutions of t he  Boltzmann equation 
have ever been found. 

-+-+ 

+ 

Actually, f o r  most problems i n  aerodynamics a knowledge of t he  
d i s t r ibu t ion  function yields  more information than is necessary, s ince 
only the gross propert ies  of t he  gas are wanted and can be given any 
experimental significance.  

p i j k . .  .m 

These gross o r  macroscopic propert ies  are 

which are moments of e i ther  the  absolute molecular veloci ty  
the  absolute temperature T, density p, and s t resses  p i j Y  Pijk’ , 
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or  the  r e l a t ive  molecular veloci ty  taken w i t h  respect t o  the  d i s t r ibu t ion  
function over a l l  of veloci ty  space. 
derivation of the  d i f f e r e n t i a l  equations which they s a t i s f y  is  ca l led  
the Lagrangian formulation by Mott-Smith (ref. 4) .  

The use of these moments and the 
L 

Instead of attempting t o  solve the  Boltzmann equation i t s e l f  i n  t h i s  
Lagrangian approach, the  Boltzmann equation i s  mult ipl ied by a function 
of t he  molecular veloci ty  components and integrated over ve loc i ty  space. 
The resu l t  i s  Enskog's equation of t r ans fe r  which i s  a general izat ion of 
a similar equation developed by Maxwell; it is  a lso  ca l led  the  general  
"equation of change" (ref. 2) .  In  the o r ig ina l  der ivat ion by Maxwell of W 
the  moment equations as w e l l  as i n  the  subsequent method of Chapman and 1 
Enskog an e x p l i c i t  form of the  d i s t r ibu t ion  function F was assumed and 3 
t h i s  function was a solution i n  a ce r t a in  sense of t he  Boltzmann equation 4 
i tself .  Grad ( r e f .  5 )  a lso  used the  same d i s t r ibu t ion  function although 
he interpreted it different ly;  he indicated too how the  equations might 
be derived without knowing F exp l i c i t l y .  

This idea of obtaining the equations r e l a t i n g  the  Lagrangian moments 
from the t r ans fe r  equation without specifying the  d i s t r ibu t ion  function 
has been car r ied  through i n  i t s  ult imate form by Ikenberry and Truesdell  
(ref. 6 ) .  Although t h e i r  paper i s  w e l l  wri t ten,  it i s  long and contains 
a grea t  deal of mathematical proof and development which, although essen- 
t i a l t o  the derivation, is  not necessary i n  order t o  develop the  r e s u l t s .  
A s  the authors point out, t he  ideas are simple and the  calculat ions,  w 

although long and elaborate,  do not involve any advanced mathematics 
other  than a knowledge of formal operation with tensors.  
present paper w i l l  give the  formal development of the  bas i c  equations, 
and then use the method which Ikenberry and Truesdell  c a l l  Maxwellian 
i t e r a t i o n  t o  obtain the equations of one-dimensional steady flow which 
w i l l  be solved by Grad's method of s e r i e s  f o r  the plane, steady shock- 
wave s t ructure .  
t i o n  but only one i s  used here; it i s  more completely discussed than the 
others  and is  the  f i rs t  method given i n  reference 6 and thus it i s  neces- 
sa ry  t o  use only the  r e s u l t s  of the  first chapter of t h a t  reference. 
Also there a r e  a f e w  mistakes i n  the  expressions f o r  the co l l i s ion  in te -  
g r a l s  and some of the i t e r a t ions  i n  reference 6 w i l l  be presented i n  
correct  form herein. 

Hence the  

Reference 6 contains e ight  d i f f e ren t  methods of i t e r a -  

The molecular model used i s  t h a t  of Maxwell, i n  which the molecules 
a re  point centers of force repe l l ing  each other  as the  inverse f i f t h  
power of the distance between molecules. The shock-wave s t ruc tu re  prob- 
lem i s  the only one solved s ince it does not involve boundary conditions, 
which would require  a knowledge of the  d i s t r ibu t ion  function if  they are 
t o  be formulated. The d i s t r ibu t ion  function is  not known so no e x p l i c i t  
form f o r  it i s  given anywhere i n  t h i s  paper. 
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SYMBOLS 

constant coefficients in shock-wave solution 

constants taken from equation (7.22) of reference 6 

distance from first molecule to initial asymptote of 
second molecular path in a collision 

collision integral 

-3 magnitude of intrinsic velocity vector 

intrinsic velocity vector, 

c 
+ + +  c = c1,c2,c3 = 5 - u 

specific heats at constant pressure and constant volume 

dUi 
dXi 

- divergence of velocity, - - ui,i 

1 1 deviatoric rate of deformation., z(ui,~ - ui i) - mij "' , 
specific internal energy, cvT 

molecular distribution function 

constant in inverse fifth-power force law 

constant ratio of viscosity to temperature 

Boltzmann's constant 

differential transfer operator; also, length parameter 
in shock-wave solution 

Mach number of flow 

mass of molecule; also, constant of integration in 
shock-wave solution 
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n(2.t) number density of molecules 

P 

Pij 

Pr Prandtl number of gas, pcp/A 

'2r I 6 

P2r I = P2rl 0,Ps = '01 s 

constant of. integration in shock-wave problem 

pressure deviator or excess pressure tensor 

spherical moment of order q = 2r + s, p'2rl s 

where s = ili2 . . . is 

S 

T 

t 

U 

i? = u1,u2,u3 

2? 

W 

static pressure 

second moment of 
+ 

F( 6 )  , pressure tensor 

higher moments of F ( C  with respect to intrinsic -+ velocity c 

constant of integration in shock-wave problem 

order of moment, 2r + s 
heat-flux vector 

specific gas constant, k/m 

intermolecular distance; also, power of c2 in Y ~ ~ , ~  

degree of homogeneous spherical harmonic 

absolute temperature 

time; also, dimensionless temperature in shock problem 

x component of u' 
velocity of gas, the average molecular velocity, 

- + 
6 

relative molecular- velocity before encounter 

dimensionless velocity in shock-wave problem 

W 
1 
3 
4 

specific momentum of molecular pair 
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X coordinate x1 

X + = X ~ J X ~ J X ~  pos i t ion  vector  i n  three dimensions 

Y pa r t i cu la r  value of dimensionless coordinate q 

YS homogeneous spherical  harmonic of order s = i l l 2  . . . is 

W 
1 
3 
4 

Y 

z 

U 

P 

Y 

'i j 

%lw 

E 

e 

A i  

h 

coordinate 

coordinate x3 

r a t i o  of thermal conductivity t o  v iscos i ty ,  

x2; a l so ,  dimensionless form of 

dimensionless form of spec i f i c  entropy 

r a t i o  of spec i f i c  heats, cp/cv 
r 

x coordinate 

- R  15 
4 

l , i = j  Kronecker de l t a ,  

maximum slope thickness of shock wave 

angle between plane of 9 and 7' and a reference 
plane through ?; a lso ,  a shock-streiigth parameter 

spec i f i c  entropy of monatomic gas; a lso,  dimensionless 
coordinate i n  shock-wave problem 

encounter angle re la ted t o  jd 

mean free path of gas upstream of shock wave 

coeff ic ient  of thermal conduction of gas, a,p 

coeff ic ient  of viscosi ty  

absolute ve loc i ty  vector 

of the gas, KT 

of molecule 

P densi ty  of gas, mn 
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7 dimensionless temperature 

angle between 3 and v' i n  a molecular co l l i s ion ,  
Yt - 28 

B 

. d $ = J w  d t 3 I w  -W d t 2 I w  -0 . . . dk1 
-W 

I separates indices 2r  and s on functions Y2r ls  and 

P2r1 s 

mean o r  expected value defined by equation (2) 

vector 

Subscripts: 

0,1,2, . . . order of approximation i n  series 

i , f  i n i t i a l  and f i n a l  states f o r  shock-wave flow 

P i  p a r t i a l  der ivat ive with respect t o  X i  

2 r  indicates  fac tor  c2r i n  polynomial 

S s indices i l i 2  . . . is 

* reference condition i n  shock wave corresponding t o  M = 1 

around subscripts indicate  sum over sl permutations 
of s indices divided by s!  

0 

Superscripts : 

D (fgh) * o r  ? hydrodynamic o r  mater ia l  der ivat ive,  - 
D t  

b-1 = (0 ) , (1 ) , (2 ) ,  - order of i t e r a t i o n  

* second of a p a i r  of molecules 

1 values a f t e r  molecular co l l i s ion ;  a lso,  ordinary deriva- 
t i v e  w i t h  respect t o  x or  7 

c 
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EXACT RELATIONS BETWEEN MOMENTS AND EQUATION O F  TRANSFER 

For a moderately r a re f i ed  monatomic gas the  n y b e r  densi ty  of mole- 
cules at  pos i t ion  x" and time t with ve loc i ty  5 i s  given by t h e  
d i s t r ibu t ion  function 
of x' space is  then the  number density 

++  
F( x, 6 ,  t)  . The number of molecules per u n i t  volume 

where the symbol . . . d$ represents t he  t r i p l e  i n t eg ra l  

. . . dEl. Themass dens i ty  or ,  simply, dens i ty  of s_, "3 .r" d C 2 S ,  
the  gas i s  then p = mn where m is the  mass of a s ingle  molecule. 
Only simple gases w i l l  be considered; therefore ,  m i s  a constant i n  
t h i s  paper. The mean o r  expected value of any function Q(x,S,t) is  
defined by 

+ - 3  

nq Q,F d c  

In  pa r t i cu la r ,  i f  Q = E i ,  

+ are t h e  components of t he  average o r  m a s s  ve loc i ty  u. 

In  t h e  Lagrangian formulation a l l  addi t iona l  mean values are j u s t  
those of t he  various products of the components of the  i n t r i n s i c  o r  
pecul ia r  ve loc i ty  defined as c ' - ' -z = 5 or  

- c i  = s i  - ui 

Then the  nth moment of F i s  defined as 

(4) 

= pci1ci2 . . . C' cilci2 . . . c F d c  ( 5 )  i n  
- 

Pil i2 .  . . in 
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Because of t h e  de f in i t i on  of c i  t he  f i rs t  moment 

pi = pci = m j l  ciF dg = 0; the  second moment 
- + 

i s  the  pressure tensor; one-half of the  contracted t h i r d  moment 

q i  = 1  - 5 P i j j  - - - cicjcjF d< ( 7 )  

i s  the  flux of energy o r  heat-f lux vector; and the  th i rd -  and higher- 
order moments have no spec ia l  names. 

The contraction of the  pressure tensor gives three t i m e s  t he  sca l a r  
pressure 

Thus i f  the absolute temperature is defined by 

P RT = - 
P 

( 9 )  

where R i s  the gas constant per un i t  mass, t he  temperature can be 
wr i t t en  as 

Also a divergenceless pressure tensor  which Ikenberry and Truesdell  c a l l  
the  pressure deviator is  defined as 

Pij = - p i j  - PEij 

so t h a t  the contraction P i t  = 0. 

W 
1 
3 
4 

Although both the  vector notat ion and Cartesian tensor  notat ion 
have been used so f a r ,  t he  l a t t e r  w i l l ,  i n  general, be adhered t o  as much 
as possible. This tensor  notation includes t h e  use of t he  double summation 

c 
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and so fo r th .  N o  = f p i e z z ,  
P i i j  Pikkzz - 

k=l  Z = l  

convention p E 
ii 

i =1 
spec ia l  form f o r  F has been assumed o r  w i l l  be necessary. Only the 
existence and d i f f e r e n t i a b i l i t y  of the  moments are going t o  be required.  

The equation of t r ans fe r  w i l l  not be derived s ince it can be taken 
from reference 1 (p. 209), reference 3 (p. 20), reference 5 (p. 3621, 
o r  the well-known t r e a t i s e  of Chapman and Cowling. In  the notat ion used 
by Ikenberry and Truesdell  th is  equation is wr i t t en  i n  the symbolic form 

L(Q) = mc(Q) (11) 

where 

and 

Much new notation has been introduced here. I n  equation (12) the  
dot denotes the  hydrodynamic derivative 

t h e  subscr ipt  comma denotes the p a r t i a l  der iva t ive  with respect t o  
and 

xi, 

i s  the  divergence of t h e  veloci ty .  The momentum equation 

P U i  + P i j , j  = o  

which normally follows from equation (11) when 
here s ince it has been used to eliminate I n  equation (13) an aster- 
i s k  denotes the second of a p a i r  of molecules, the  prime denotes the out- 
come of a co l l i s ion ,  and b and E are standard co l l i s ion  parameters 
whose prec ise  nature need not be specif ied s ince the  in t eg ra l s  involving 

Q = c i  w i l l  not do so 
I i i .  
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them have been evaluated in reference 6 and only the results will be 
needed here. Also, 

SQ = Q*' + Q' - Q* - Q = 2[(Q*) ' - Q*] (17) 

and 

a+= 3 + 2 

Conservation of momentum and energy duking a collision requires that 

v = v' 

if v = Iql and v' = 17'1. 
"he apparent choice for Q would seem to be the various products 

in c which would lead to expressions for equations (12) and (13) in 
terms of the moments 
that this choice would lead to unnecessary complications which canjbe 
avoided by taking for Q(3 homogeneous spherical harmonics in c as 
was originally suggested by Maxwell. 
is the set of symmetric functions proposed by Ikenberry (ref. 7): 

p ili *...in= But Ikenberry and Truesdell point out 

Their choice of spherical harmonics 

Y(?) = 1 

Yi(C) = ci 
+ 

and so forth, where parentheses around 
the s !  permutations of the indices divided by s ! .  Thus, for example: 

s subscripts indicate a sum over 

W 
1 
3 
4 

b 



11 

W 
1 
3 
4 

and because both Yi j  and 6kz a re  symmetric, the 24 terms reduce t o  6. 
The Ys(2) thus defined, s representing a set of s indices 
il,i2 . . . is, a e  the components of symmetric tensors  which when con- 
t r ac t ed  on any p a i r  of indices reduce t o  zero. 

Let 

and define the spherical  moment P2rls  of order 2 r  + s = q by 

-3 
where d? = dg and the  integrat ion is over a l l  of veloci ty  3 space. 
This moment of order q 
the  qth moments and when contracted on any p a i r  of indices it becomes 
zero. It includes and generalizes the second-order pressure deviator  
defined i n  equation (10). 
moments of equation (22) t o  the moments defined by equation ( 5 )  are set 
f o r t h  i n  appendix A and the resu l t s  are the following expressions: 

i s  a symmetric i so t ropic  tensor  function of 

"he ca i cu la t ims  which relate the spher ica l  
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with the inverse r e l a t ions  

p i j  = Pij + p"j = Pij  + 1 P tiij 

P i22  = '2li = 241 

3 21 

P i j k  = P i j k  + ' P 5 2 I( i6jk)  

Pi jk2 = 'ijk2 + 4 '21 ( ij6kZ) + 7 p416(ij6kZ) 

1 
Pi jzz  = P 2 l i j  + -P41"j 3 

P&zz = '41 
10 

PijkZm = 'ijkZm + 9 '21(ijk62m) + 

PijkZZ = '2lijk + 3 p41 ( i6 jk )  

Pikkzz = '4 li 

p i j z z m m  = ' 4 l i j  + $ '6l'ij 

'41 (i6jk62m) 

= PSI pkkz zm 

These a re  the only moments which are used i n  t h i s  paper. 

In  the t r ans fe r  equation the  function Q is  now taken equal t o  
Y2rls so t h a t  the  next s t ep  i s  the  calculat ion of t he  L(Y2rls) and 

C(Yprl s) terms. This i s  straightforward but increasingly lengthy as 
q = 2 r  + s increases,  insofar  as L(Yzrls) i s  concerned, and the  r e s u l t s  
are (as given i n  the  o r ig ina l  paper but with p i j  replaced by 

P i j  + p8ij ) :  

W 
1 
3 
4 
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1 

22 14 2 2 
--P 21 21kZEkZ'ij + 5 41 E id - - pijkpk2,2 - 'ijkP,k 

2 2 
2lijk,k - 5 p4(k,ksij + 5 '41 (i,j) + P  
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and so on, ad infinitum. The new symbol Eij is the divergenceless 
rate-of-deformation tensor or deviatory rate of deformation defined by 

A sample calculation given in appendix B illustrates the method of 
finding the expressions in equations (25). 
expressions of many terms involving permutation of subscripts, such as, 
for example, the last term in L Yijk) which is 

Note the presence in these 

( 

and the term in L(Yij) which is 

1 
2Pk(iuj),k = E(2Pkiuj,k + 2pkjui,k) 

The calculation of C(Y2rl s) depends on the evaluation of certain 
integrals whose values are functions of the molecular model chosen. 
Ikenberry and Truesdell discuss the problem for arbitrary models and 
set up a systematic procedure for Maxwell molecules which repel each 
other as the inverse fifth parer of the distance. Now a Maxwell gas 
is an ideal monatomic gas with the equation of state 

where R, the specific gas constant, is equal to the Boltzmann constant 
k divided by the mass m of a molecule. For this gas the specific 
heats at constant pressure and constant volume are constants given by 

3 cv = - R and cp = 2 R so that 2 2 

"he specific internal energy is 

while the specific entropy is 

- 

W 
1 
3 
4 

Q 

- 

c 
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= 9.8174 

where 

i s  then a dimensionless form of the entropy. 
heat conduction A and the  coeff ic ient  of v i scos i ty  p are then pro- 
por t iona l  t o  T and these re la t ions  w i l l  be wr i t t en  

Both t h e  coef f ic ien t  of 

h = up 

p = KT 

with 

Consequently, the Prandt l  number i s  constant and i s  equal t o  2/3 s ince 

Such a gas i s  a very close approximation t o  ac tua l  monatomic gases a t  
room temperature and above u n t i l  i n t e rna l  degrees of freedom are exc i ted  
or  the gas becomes ionized. 

For the Maxwell gas Ikenberry and Truesdell  evaluated the in t eg ra l s  
and ar r ived  at  ce r t a in  constants B1, B2, and B4 which depend upon 
the constant G i n  t he  intermoleeulm force l a w  f = G r - 5 .  These have 
t h e  following values : . 

(35) 

with nB2 = p/p. 
l i s i o n  in t eg ra l s  are  homogeneous functions of the constants B, it i s  
possible  t o  write the  r e s u l t s  i n  t h e  following form: 

Because of t h i s  last r e s u l t  and the  f a c t  tha t  t he  col- 
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m C ( l )  = o 
rnC(Yi) = 0 

mc(c2) = o 

mc(Yij)  = - p i j  

A l l  but  one o f  t he  above equations agree with the  expressions i n  re fer -  
ence 6, and the one which does d i f f e r  i s  worked out i n  appendix B as an 
example of the calculation. 

sponding integrals  i n  equations (36) leads t o  nine exact equations 
Sett ing the  expressions i n  equations (25) equal t o  t h e i r  corre- 



35 17 

of t r ans fe r ;  i f  the  calculat ions were continued, t he  number of such 
equations would increase indef in i te ly .  
obtained are t h e  well-known equations of cont inui ty ,  momentum, and 
energy while the fourth,  f i f t h ,  and s ixth equations have been obtained 
before, notably by Grad. However, no one has attempted t o  use t h e  f u l l  
set of exact equations. Instead some scheme of truncation l i k e  Grad's 
o r  a form of i t e r a t i o n  i s  used. The l a t t e r  leads t o  sets of approxima- 
t i o n  equations l i k e  those of Burnett. Ikenberry and Truesdell suggest 
a simple scheme of i t e r a t i o n ,  which they cal l  Maxwellian i t e r a t i o n ,  as 
w e l l  as var ia t ions  of t h i s  scheme. Only t h e  Maxwellian i t e r a t i o n  method 
w i l l  be considered i n  detai l  i n  t h i s  paper. 

The first three equations 

MAXWELLIAN AND OTHER METHODS OF ITERATION 

Maxwellian I t e r a t ion  

Maxwellian i t e r a t i o n  is  discussed throughout chapter 1 of reference 6 
and what it amounts t o  i n  the f i n a l  formalization is  as follows. Replace 
t h e  exact  equation of transfer (11) by t h e  equation 

mC(ntl)(Q) = L(n) (Q)  i 371 

which ind ica tes  t h a t  t h e  n + 1st i t e r a t i o n  for mC i s  obtained by 
subs t i t u t ing  t h e  n th  i t e r a t i o n  i n t o  L. I n  order t o  get  started some 
i n i t i a t i o n  scheme must be proposed and t h i s  must give the  Navier-Stokes 
equations t o  begin with. Maxwellian i t e r a t ion ,  as defined by Ikenberry 
and Truesdell, then starts with t h e  agreement t h a t  t o  the  zeroth approxi- 
mat ioli 

and takes t h e  functions Q i n  equation (37) t o  be  YZrl i n  order of 
lncreasing 2 r  + s and, f o r  f ixed  2 r  + 6, i n  order of increasing s. 
Thus most of t he  zeroth i t e r a t i o n s  vanish; f o r  example, 

. 
( 0 )  Pijk = 0 
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The only nonzero i t e r a t ions  which occur i n  equations (25) are 

( 0 )  
21 

p = 3P 

since (2 r  + 1) ! !  = (2r  + 1 ) ( 2 r  - 1 ) ( 2 r  - 3 )  . . . (3)(1).  

Except f o r  t he  f i rs t  three expressions i n  equations (25), which are 
sa t i s f i ed  at a l l  orders of i t e r a t ion ,  t he  expressions t o  the  zeroth order 
a re  

L(O) (Yij)  = 2pEij 

L(o)(c2Yi) = - 5P p , i  + 5($),i = - 4 a.pT,i 
3 

P i  P i  T i  P 
P P T PT 

s ince equation (27) gives 2 = + and - = R = - 

L(0)(Yijk) = 0 

( In  f ac t ,  according t o  Ikenberry and Truesdell, a l l  L(o)(Y2r, .) = 0 i f  
s 2 3 so it follows tha t  

although these l a s t  two were not included i n  equations (25) . )  

L(0)(c4) = 1 5 ( 2 )  + 35 - P2 E = 20 - P2 
P P P 

i: 
2 P  2 P  F 

since from equation (31) = 2 2 - 2 while continuity gives E = - - 
L(O) (c2Yij) = 14 - P* E i j  

P 

2 + 35(p3) = 70 - P3 T p2T J i  
L(0)(C4Yi) = -35 7 ,i 

(39) 

W 
1 

L 
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When one subs t i t u t e s  these expressions i n t o  equation (37) with 
'I = 0 and uses t h e  values of mC YZrls) given i n  equations (36) t h e  
following set of equations for t he  f i r s t  i t e r a t i o n s  r e s u l t s :  

( 

These algebraic  equations are e a s i l y  solved with t h e  r e s u l t  t h a t  
the  f i r s t -o rde r  i t e r a t i o n s  are:  

. 
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P g  = 0 

(44) 

The first s i x  of these equations are iden t i ca l  w i t h  t h e  values given i n  
reference 6 but the last two have s l i g h t l y  d i f f e ren t  numerical coeff i -  
c i en t s  because of t he  u6e of the correct  value f o r  mC(ckii) and an  
apparent typographic e r ro r  i n  the  last i t e r a t ion .  

The f i r s t  two of the i t e r a t i o n s  (eqs. (40) and (41)) when subst i tuted 
in to  the first three of equations (25) 

1 I ; + p E = O  

J 36 + 5pE + 2Ei jP i j  + 2q i , i  = 0 

which are  the equations of conservation, give the  Navier-Stokes and 
energy equations f o r  an idea l  monatomic gas 

b + p E = O  

(49) P l i i  + P , i  = 2(PEij),j 

36 + 5pE - 4 f l i j E i j  - 2(hT,i),i = 0 

W 
1 
3 
4 
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I n  order t o  f ind  the second i te ra t ions ,  i n s e r t  expressions (40) t o  

with super- 
(47) in to  the remaining of equations (25) i n  order t o  obtain L(1)(Y2rl .), 
then set these equal t o  t h e  corresponding terms mC(Y2r,s) 
s c r i p t  (2)  on a l l  of the moments according t o  the  equation 

The procedure is  straightforward but the calculat ion is long, so t he  
d e t a i l s  w i l l  be omitted here. The r e su l t s  are: 

(2) 2P + - 2v2 EEij + 7 4P2 %( iUj ) ,k  
P 

Pij = -wij + +Eij>' 
P 

+ $: ( EjkEjk ) ,i + pp E i j ( @ j k ) , k  

16p2 - 5P P EZ(i6jk)(PEZm),m - $g 6 ( i j % ) Z ) , Z  + 4P(E E( i j ) , k )  

2 - ' 7 %( i6 jkEZ)m + %n%'( i j6kZ))] , 2 
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These i t e r a t ions  are the  same as tnose given i n  reference 6 but  t he  
next two are somewhat d i f f e ren t  and therefore correct  t he  e r ro r s  ili 

equations (11.4) and (11.5) of reference 6. 
L 

They are: 

P 

W 
1 
3 
4 

64 3 + -  256 ' E(jEikEkj - EkZEk26ij) + 49 :(SEkZE2(i %n%.nGk(i)Uj),k 
147 PP 
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were not 

qi , .and,  because of the  great length of t h e  calculat ion,  it 

(2) (2)  (2)  
'41i~ and '2lijk The o ther  second i t e r a t i o n s  Pijkr, 

and 
found because they are not needed t o  obtain t h e  t h i r d  i t e r a t i o n s  f o r  

P i j  
and qi (3) whose values w a s  ca r r ied  j u s t  far enough t o  obtain 

tu rn  out  t o  be, i n  agreement with equations (12.1) and (12.2) of 
reference 6, 

'i j 

(55) 

(2)  from (2)  (2) (2)  (2)  and 
41 Upon subs t i t u t ion  for Pij , qi , Pijk, P2,ij,  

.~ 
equations ( 5 0 )  t o  (54), t h e  t h i r d  i t e r a t i o n s  f o r  Pi j  and q i  w i l l  
now be had i n  terms of t h e  quant i t ies  of state p, p, T, and U i .  

Using these t h i r d  i t e r a t i o n s  i n  equation (48) w i l l  then give a system of 
r i v e  p a r t i a l  d i f f e r e n t i a l  equations which =,re sfmilar t o  the  R i rne t t  
equations. 

This i s  as far as the  method of Maxwellian i t e r a t i o n  i s  ca r r i ed  by 
Ikenberry and Truesdell and a s  f a r  as it w i l l  be car r ied  here. Neither 
t h e  i n i t i a t i o n  agreement (38) nor t h e  method of i t e r a t i o n  defined by 
equation (37) i s  the  only method possible ,  and it could be t h a t  a b e t t e r  
approach i s  possible .  

Other Methods of I t e r a t i o n  

Ikenberry and Truesdell a lso propose the  following methods of 
i t e r a t i o n :  

(1) Atemporal Maxwellian i t e r a t ion .  This method i s  c loses t  t o  t he  
Chapman-Enskog process and gives t h e  Burnett terms but i s  r e j ec t ed  by 
t h e  authors of reference 6 because it adds unnecessary complications 
t o  t h e  simpler method of Maxwellian i t e r a t ion .  
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(2)  Grad's method. This i s  Grad's method of t runca t ion  of t he  
exact equations found above; by s e t t i n g  
t i o n s  of Grad can be found f o r  Maxwellmolecules. Thus i f  

L(Y2,lS) = mC(Y2,~,) t h e  equa- 

pi jk2 = 3RT(2p(ij'k2) - "(ij'k2)) 

I Grad's 20-moment approximation is  obtained, and i f ,  i n  addi t ion,  

I t he  Grad 13-moment approximation is  found. 

(3)  In tegra l  i t e r a t i o n .  T h i s  i s  a modification of i t e r a t i o n  
equation (37) which requires  an in tegra t ion  t o  be performed a t  each 
s tep.  
used. Even when l inear ized ,  the r e su l t i ng  equations remain too complex 
f o r  ac tua l  so lu t ion  so some scheme of approximation i s  s t i l l  necessary. 
The method does not seem t o  be any better than the Maxwellian i t e r a t i o n ,  
although it does give a correct  so lu t ion  t o  the problem of time-dependent 
shear flow. In  a personal communication, Trusedell  expressed t h e  belief 
t h a t  i n t eg ra l  i t e r a t i o n  i s  better than Maxwellian i t e r a t i o n  i n  that  it 
probably leads t o  the general  so lu t ion  of t he  in i t i a l -va lue  problem. 
However, aerodynamicists are more concerned w i t h  the  s teady-s ta te  problem. 

It a l so  requires  a knowledge of i n i t i a l  values of a l l  t h e  moments 

~ 
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(4)  Scheme using maximum avai lab le  information. T h i s  i s  a varia- 
t i o n  of Maxwellian i t e r a t i o n  where a t  each s t ep  the highest  known itera- 
t i o n  is used. 
faster than Maxwellian i t e r a t i o n  introduces them. 

It has t h e  advantage of introducing higher-order terms 

( 5 )  I t e r a t ion  by powers. This is  similar t o  t h e  Hilbert-Enskog 
expansion i n  powers of a parameter which i s  f i n a l l y  set equal t o  1. 
resu l t i ng  equations have fewer terms than are necessary i n  Maxwellian 
i t e r a t i o n .  

"he 

(6) Truesdell i t e r a t ion .  This is  suggested as the  name f o r  what 
i s  ca l l ed  i n  reference 6 "a scheme which t r e a t s  a lgebra ica l ly  l i k e  terms 
on an equal footing." 
t i a l l y  expressed i n  increasing powers of p, such as i n  the o ther  schemes 
including Maxwellian i t e r a t i o n ,  t h i s  t r e a t s  a l l  of the terms i n  each 
equation of t r ans fe r  alike.  Only the  higher moments and t h e  t i m e  deriva- 
t i v e s  a r e  replaced by approximations. The r e s u l t  i s  tha t  each i t e r a t i o n  
i s  a r a t iona l  function instead of a polynomial i n  p. This scheme shows 
considerably more promise than any of the others  and one attempt t o  apply 
it t o  plane Couette flow i s  given i n  reference 8. 
it i s  a l s o b e s t  f o r  the case of time-dependent shear flow. 

Instead of obtaining i t e r a t i o n s  which are essen- 

Trusedell  f i nds  t h a t  
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(7)  I t e r a t ion  i n  equations of moments. This is  a var ia t ion  of 
Maxwellian i t e r a t i o n  which has a d i f fe ren t  i n i t i a t i o n  agreement. It is  
not developed o r  used i n  reference 6 and does not appear t o  be any better 
than t h e  Maxwellian i t e r a t ion .  

(8) I t e r a t ion  from free-molecular flow. This method starts with 
the  i n i t i a t i o n  agreement t h a t  the zeroth i t e r a t i o n s  are the  values of 
t he  moments of free-molecular flow. However, it is  not developed, and 
elsewhere i n  h i s  paper Truesdell  e f fec t ive ly  shows t h a t  the  whole k i n e t i c  
theory as based upon moments i s  cer ta inly not appropriate f o r  free- 
molecular flow s. 

It would appear t h a t  the method of Maxwellian i t e r a t i o n  i s  probably 
the easiest method t o  use i n  theore t ica l  aerodynamics i f  a so lu t ion  of 
equations (48) is  wanted. Actually, the  exact equations of t r a n s f e r  are 
equivalent t o  the  Boltzman equation; a nonlinear in tegrodi f fe ren t ia l  
equation is  thus replaced by an in f in i t e  system of f i r s t -order  nonlinear 
p a r t i a l  d i f f e r e n t i a l  equations and for  problems i n  continuum o r  near- 
continuum flow the  la t ter  are cer ta inly more appropriate. The question 
of boundary values f o r  an i n f i n i t e  se t  of moments has not been and prob- 
ably cannot be settled because of the lack of physical  s ignif icance of t he  
higher moments. Thus It I s  cecessery i n  any physical problem t o  r e s o r t  
t o  some s o r t  of i t e r a t i o n  so  t h a t  these higher moments can be exgi-essed 
i n  terms of the  physical var iables  of state and t h e i r  der ivat ives .  Even 
then the  question of boundary conditions on these variables has not been 
f u l l y  answered s ince a proper formulation of boundary conditions seems 
t o  depend upon a knowledge of t he  d is t r ibu t ion  function i n  
the  neighborhood of the  w a l l  where the boundary condition i s  taken. 
To specify F would not be i n  the  s p i r i t  of the  above theory, which i s  
lnZependent of F. 

4 4  
F(x,E,t) 

There is  one problem of great  physical  i n t e re s t  f o r  which boundary 
conditions are not required and th i s  i s  t h a t  of the  s t ruc ture  of a 
steady, plane shock wave. 
t he  simplest forms of the  equations, t he  equations a re  s t i l l  very com- 
plex.  S t i l l  an approximate solution can be found, and it w i l l  be 
presented i n  the  next section of t h i s  paper. 

Even though t h i s  problem leads t o  one of 

STRUCTURE OF PLANE SHOCK WAVE 

Derivation of Equations f o r  Plane Shock Wave 

The macroscopic d i f f e r e n t i a l  equations (48) f o r  a Maxwell gas with 
the pressure tensor and heat-flux vector given by the  t h i r d  Maxwellian 
i t e r a t i o n  (eqs. ( 5 5 )  and (56))  can be used t o  calculate  the thickness 
of a plane, steady, shock wave as suggested by Ikenberry and Truesdell  
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(footnote p. 41, ref. 6 ) .  Their suggestion was t o  go only a s  far as the  
second i t e r a t i o n s  f o r  Pij  and qi. Talbot and Sherman ( r e f .  9, p. 16) 
refer t o  a series solut ion they found f o r  t he  extended Burnett equations, 
although t h e  r e s u l t s  they give are those of a numerical integrat ion.  The 
numerical integrat ion i s  so much b e t t e r  t h a t  considerable doubt is  
thrown upon any series solut ion.  Since only the  series so lu t ion  of t h e  
Ikenberry-Truesdell equations was found, however, t he  method used and 
r e s u l t s  obtained are reported upon here. 

Since the  o r ig ina l  series method of Talbot and Sherman included 
l i n e a r  terms from the  third-order Burnett approximation, it w a s  con- 
sidered desirable  t o  go fu r the r  and include a l l  terms i n  
t h i r d  Maxwellian i t e r a t ion .  These turned out t o  be qui te  numerous 
and added some complexity t o  t h e  calculat ions but s t i l l  the  labor  w a s  
not so great as it would have been i f  a l l  of t he  th i rd - i t e r a t ion  terms 
had been included. 
MI-. Richard A .  Gregory, car r ied  through the  der ivat ions and calculat ions 
more o r  l e s s  independently u n t i l  t h e  same r e s u l t s  were obtained. Thus 
the  r e s u l t s  presented here are considered t o  be correct  within the  l i m i -  
t a t i o n s  of t he  series method. 

p3 from the  

Both t h e  author of t h i s  paper and one of h i s  students,  

In  t h e  one-dimensional steady flow of a gas there  is  only one space 
var iab le  x1 which i s  denoted by x and only one component of the  
ve loc i ty  vector u1 denoted by u. The hydrodynamic der iva t ive  reduces 
t o  

so t h a t  the  equations 9f conservation (48) become 

1 up' + pE = 0 

puu' + p '  + P,' = 0 

Pxy' = Pxz' = 0 
(57)  

3up' + 5pE + 2PijEij + 2qx' = OJ 

The prime denotes d i f f e ren t i a t ion  with respect  t o  x. Since 

W 
1 
3 
4 



27 

. 

W 
1 

EXy = E,, = Eyz = 0 

where subscr ipts  
the tensors  P i j  and E i j ,  equations (57) reduce t o  

x,y,z denote the subscr ipts  1, 2, 3 ,  respect ively,  of 

d 
dx 
- (pu) = 0 

The f i rs t  two equations have the in tegra ls  

pu = m = Constant 

2 PU + P + P, = P = Constant 

and s ince P, + Pyy + P,, = 0, t h e  t h i r d  equation can be wr i t t en  

?(.p)' + u ' ( p  + Pn) + qxt = 0 
2 

Using equation (60 ) ,  t h i s  becomes 

d 3 up + UP - - m u  1 2  + qx) = 0 -(- d x 2  2 

with the  in t eg ra l  

- 3 up + UP - - 1 3  pu + q, = - 1 Q = Constant 
2 2 2 

Eliminating 
equation 

P between t h i s  equation and equation (60) gives the  energy 

(61) 5up + pu3 +  UP, + 2q, = Q 

Since p = RpT the three equations (59) t o  (61) reduce t o  two: 
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mu + - mRT + P , = P  
U I 5mRT + mu2 + 2uP, + 2qx = Q 

which indicate e x p l i c i t l y  t h a t  the  problem involves only two unknown 
functions u and T of x which have t o  be found. F i r s t  t h e  appro- 
p r i a t e  i t e r a t ion  f o r  P, and q, has t o  be found and subs t i tu ted  in to  

equation (62) . 
The f i r s t  i t e r a t ions  given by equations (40) and (41) a re  

Introducing these in to  equations (62) gives t h e  Navier-Stokes equations 
f o r  the simple one-dimensional flow. The second i t e r a t i o n s  are given by 
equations (50) and (51) which, when they are wr i t ten  f o r  one-dimensional 
flow and l ike  terms are combined, w i l l  give 

Evaluation of the  der ivat ives  i n  terms of those of j u s t  u and T by 
means of t h e  formulas of appendix C reduces these i t e r a t i o n s  t o  
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These expressions are qu i t e  similar t o  the corresponding ones i n  equa- 
t i o n  (B7) of reference 9, yet  they d i f f e r  s ign i f icant ly ,  e spec ia l ly  t h e  
expression f o r  

powers of p as t h e  last three terms i n  equation (64) show. The t h i r d  
4 i t e r a t i o n s  w i l l  include more terms i n  p3 as w e l l  as some terms i n  p . 

( 2 ) .  It is  seen t h a t  Maxwellian i t e r a t i o n  i s  not i n  
qx 

A s  equations depend on t h e  

i n  t u r n  
2 lij' second i t e r a t i o n s  

depend upon a knowledge of t h e  f i rs t  i t e r a t ions  PijkZ (') 

Even f o r  t h i s  simple case t h e  number of terms i n  a l l  of these i t e r a t i o n s  
becomes tremendous, ye t  t he  calculation i s  straightforward although time 
consuming. Since Talbot and Sherman or ig ina l ly  included terms l i n e a r  i n  
~3 but not a l l  of t h e  terms i n  p3 and none i n  p4 f o r  t h e  Burnett 
equations, it was considered su f f i c i ec t  i f  a l l  terms t o  p3 
i t e r a t i o n s  f o r  P,, and qx were included but  no terms i n  p . Then 
In t h e  second i t e r a t i o n s  above only terms i n  p2 need be re ta ined  and 

2 l i j k '  and P 

the third 

7 ,  \ 
t he  first i t e r a t i o n s  Pijk and PtLl jk  w i l l  not be  usec since they  BTe 

21 
themselves proportional t o  id. 

The t h i r d  i t e r a t i o n  f o r  t h i s  one-dimensional flow according t o  
equations ( 5 5 )  and ( 5 6 )  becomes 

I n  equation (65) 
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since 

Alsc 

so tha t  

(PE))2  - ( = k P2(u1)2 + o(d> 
pYY 3 

where O( ) denotes order of .  

From equations (52) t o  (54), re ta in ing  only terms i n  p2, 

2 (2 )  - - - 8p2 + -(ul) scc2 2 + !E  IT' + 0 ( ~ 3 )  
pxxx 5P 5 PU PT 

4CL2 2 P -  (2) (2) - 4p2 UII - -(ul)2 - 2 ~ l  u iT i  + o(P3) 
xyy - pxzz - - - 5PU PT 5P 

p(2) - - - - 28 - CLP u '  + - 2fb2 uu" + 2876 k ( u l )  2 + - l24P2 uu'T1 
21 = 3 P  3P 63 P 3PT 

P2P 2 P2P 

p2uT p2T2 P2T 

PP 2 2  P2 
41 P P PT 3 P  P 

+ 12 - P2p u'T' + 38 - (TI )  + 26 - T" + O($) 

+ 315 - P2 uu'T' + 45 - P2p u'T' + - 135P2 u2(T') 2 + 270 -(TI) P2P 

2 
P(2) = 15 E - 30 @ u' - 45 - UT' + 475 "(ut) + 45 - uutl 

2 

PT p2uT 2 pT2 p2T2 

+ - 135P2 u2T" + 315 - P2p T" + o(p3) 
h 
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Taking der ivat ives  of these i t e r a t i o n s  and the  ones i n  equations (63) 
and (64) is long and tedious; when t h e  r e s u l t s  are subs t i tu ted  i n t o  
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equations (65) and (66) and l ike  terms are combined, the f i n a l  forms f o r  
(3) are P(3) and q 
X xx 

Equations (62) together with equations (67) and (68) are now the  
equations of motion. By imposing the  Rankine-Hugoniot conditions on 
the  flow far upstream and far downstream 
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where subscripts i and f refer t o  upstream and downstream conditions, 
the problem becomes t h a t  of the  plane, steady shock wave. 

Ser ies  Solution of Equations f o r  Plane Shock Wave 

Take a series expansion i n  powers of Grad's expansion parameter E 

which i s  defined as 

I n  a Maxwell gas the Mach number squared i s  

and the Rankine-Hugoniot conditions (69) become 

m 
Mi 

Then 

and 

15(M: - 1) 
€ =  

Let t and w be the dimensionless forms of temperature and 
veloci ty  def ined  by 

W 
1 
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p2 15 + 2 ~ t  - €2 

m2R 64 
T = -  

. 
Then 
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b 

p = - = - -  m m2 8 
u P 5 + a  
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(73) 

(74) 

(75) 

and the Rankine-Hugoniot boundary conditions of equations (69) reduce t o  
the  simple form 

L e t  

I 
Wf = 

downstream when x + a, I 
1 tf = 1 

Other parameters are introduced, one of which i s  
J 

(78) 

Here L, i s  a reference length corresponding t o  p, a t  the temperature 
T+ which occurs when M = 1, so that  To i s  the s tagnat ion temperature. 
Let 

(79) 
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so 

where 

= ”(. - $) 
T* 64 

The d-nensionless length, used i n  place of x, i s  then 

256 ET*X ‘I =- -  
525 L, 

and t h i s  i s  r e l a t ed  t o  Grad’s reference length 

4 EX y = - -  
35 L* 

q = (l -$)Y 

Equations (62) now become i n  terms of t and w 

~ E ( W  + t)  + c2(w2 - 1) + 8(5 + EW)? = 0 

~ O E ( W  + t)  + e2(w2 - 1) + 16(5 + 

From the def in i t ion  of q 

so i f  the prime is  now used t o  denote d i f f e ren t i a t ion  with respect t o  
7, t h e  expressions fo r  l’g) and 9, (’) given by equations (67) and (68) 
become 



35 - 
4 

P 3(525) 9(525) 
(15 + 2 ~ t  - E ~ ) w '  + 56E 2(5 + m)(15 + 2 ~ t  - E ~ ) ( w ' ) ~  

2 E2 
(3) 

pxx - = -  

w 
1 
3 
4 

( 5  + (34)2(15 + 
863 

3 ( 525) 
+ 

4 + 16E ( 5  + € w ) ( t ' ) 2  + 
(525)2 

2Et - 2 ) w "  + 16E4 ( 5  + €w)2W't' 
3 ( 525 1 

7 

(5  + m)(15 + 2 ~ t  - E2) t ' '  

(525)2 

2Et - €2) [5( l5  + 2Et - €2) + ( 5  + € W ) 2 ] v " '  

When these a re  subst i tuted i n t o  equations (85) and the  terms arranged 
i n  increasing powers of E only as f a r  a s  c4, the  d i f f e r e n t i a l  equations 
t o  be solved are  
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2E(t + w )  + .,(,, - 1 - 16 w )  + "(- 2t + 3w w '  + 20 w" + - t" 
2 1  105 3 21  4 ,  7 

+ w) + €2 - 1 - - 32 w '  - 12 t )  + "'[- 4 ( 2 t  + 3 w ) w '  - 3 t t '  
21 7 105 3 

- 422 w"  + 151 t'] + d[Q t'  - 2(2tw - 5 ) w '  + L(764 t  + 873w)w" 
21 7 525 4 3 63 

+ 151(t + 3 w ) t "  + - 388(,1)2 + a + 151(t')2 - 6721 t"' 
21 63 9 21  147 

Expand w and t i n  a series i n  powers of E 

1 w = w o  + €wl + EZ2 + E3W + . . . 3 I t = t  + E t l + € t 2 + E t  2 3 + .  . . 
0 3 

W 
1 

so that 

w2 = wo2 + 2€w0w1 + € w12 + 2wow2) + . . . 
2 (  

t w '  = t o w o  + '(tow1' + t1wo') + . . . 
and so f o r t h .  
and arranging terms i n  increasing powers of E up t o  give two very 
long equations which w i l l  not be wr i t ten  out s ince the  next s t ep  cons is t s  
i n  s e t t i ng  each coef f ic ien t  of the powers of E equal t o  zero. The 
f i n a l  r e su l t  i s  a p a i r  of d i f f e r e n t i a l  equations f o r  each power of 
5rs follows: 

Subst i tut ing equations (89) i n t o  equations (87) and (88) 

E 
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t o  + wo = 0 (90) 

W 
1 
3 
4 

~- 

' + 32 Wo" + 22- to" = 0 
735 0 0  

16 a t2 + w 2  + w o w 1  - - wl '  - - towof - - w w 
21 315 105 

(93) 
6 32 16 4 wl' - - tl' - - t owo '  - - w w 
7 315 105 O O 35 

- - t t ' 16 
5(% + w2) + wowi - 21 0 0  

+ -  1688 w o l ~  + 604 
2205 735 

= (94) 

t 3  + w 3  + - 1 w 1 2  + w o w 2  - - 8 w 2 '  - - ( tow1'  16 + t l W 0 ' )  - --(Woq' 8 + w p o ; )  
2 21 315 105 

32 It  32 tl" + -(5 8 - 2 t  w w ' + 
+ 735 1575 O) 2205 +-w 

+ 2(3Wo 
( 105 ) 945 66ig 

- 9  5(t3 + w 3 )  + $ w1-  t WOG.2 
2 1 C  7 -  8 

- -(wow1' 16 + WlWO') - -(tot1' 4 i- t1to') + w l ~ l  + 604 t l t t  

105 35 735 

+ -  + - t o ' - - t w w  2 32 I + -  16 
35 1575 0 0 0 315 wo + '&E 7 

151 388 + W O ' t 0 '  + =(to')* 
0 0'' + 6 j ( v o ' )  9 21 

+ - 151 toto + - w t 
21  7 
6721 13100 o''j = 0 

147 (21) 
- - - - 

(95) 



The solut ion i s  found s t ep  by s tep.  
which when subst i tuted in to  equation (92) and 
between equations (91) and (92) gives f o r  wo 

From equation (90) 

tl + w 1  
the  d i f f e r e n t i a l  equation 

to = -wo, 
i s  eliminated 

(97) - 1  

The solution i s  

W o  = -to = -tanh q W 
1 
3 
4 

(98) 

and equation (91) o r  (92) becomes 

tl + w = - -(wo* 5 - 1) 42 1 

Eliminate t2 + w2 between equations (93) and (94),  obtaining with 
the  a id  of equations (97) t o  (99) a d i f f e r e n t i a l  equation f o r  w1 

- dw 1 - 2wOW1 = 29 w o ( w o 2  - 1) 
drl 245 

whose solution is 

Then f rom equation (99) 

So f a r  the r e s u l t s  are the  same as those t h e  Burnett equations gave 
In  f ac t ,  continuing i n  t h i s  manner, t he  form of f o r  T a l b o t  and Sherman. 

the  solution f o r  w2 i s  a l so  the  same, being 

However, the values of two of t he  constants A and B are d i f fe ren t .  
The constants are 
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- (s) = -0.00698042 1 422 A =  
(245) 

B =  5T6 - A = 0.0549604 
49(245) 

W 
1 
3 
4 

C = - i(*) = -0.00700541 

D = -(%) = -0.00350270 

2 245 

2 

Subst i tute  equations (100) and (102) in to  equation (89) and the  
so lu t ion  f o r  w becomes 

w = wo - E -(l 29 - wo2)loge(1 - wo2) + ~‘(1 - wo 
490 

-\121 

1’ + cwo log, (1 - wo2) + Dwo [log, (1 - w$)J 

This can now be used t o  f ind  the thickness of t he  shock wave, which w i l l  
be taken t o  be t h e  maximum slope thickness defined by 

dw d% Now wf - w = -2 while - is a maximum where - = 0. Different i -  

a t i n g  equation (104) twice, tne expictaulzz fsr !& i s  found as a series 
dtl dq2 

i 

dq2 

2 d% i n  E t o  terms i n  E . Since the equation - = 0 need not be solved 

exact ly  and probably cannot be solved so, the solut ion i s  taken t o  be 
dq2 
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Taking 
series f o r  the  hyperbolic tangent 

Yo = 0, which simply f i x e s  the or ig in ,  and using t h e  i n f i n i t e  

2 1 3 
wo = -tanh Y = -cy1 - c y2 + -(.Yl + € 2 ~ ~ )  - . . . 

3 

d% 

dT2 
t h i s  value of wo i s  s'ubstituted in to  the expression f o r  - The 

r e s u l t  i s  t o  terms i n  €2 

w i t h  the solut ion 

Then 

2 = -1 + K €  
( 3 I n a x  

where 

Y1 - A - B = -0.051483 u = Y 2 + -  29 
245 

Using y instead of q as the  dimensionless coordinate, the  veloc- 
i t y  thickness of the shock wave is 

Using the 

t i v e  9 
d Y  

v a l u e s  j u s t  calculated f o r  wf - wi,  (G)mm dw , and the deriva- 

W 
1 
3 
4 

from equation ( 8 4 )  
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W 
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= 2(1 - 0.011483~~ + . . .) 
This agrees best with the r e s u l t  i n  reference 10 f o r  a Navier-Stokes 
p ro f i l e  f o r  a Maxwell gas, which i n  the present  notat ion becomes 

6,w(y) = 2(1 - 0,015182 + . . .) 
I n  order t o  compare the present calculated thickness with the 

r e s u l t s  of reference 9 a transformation of equation (107) must be made. 
Since 

and 

6 2 ( x )  = -(l 3% - (?,Oll483~~) 
2E 

o r  

w i t h  E given by equation (71). Calculated values of equation (108) 
a re  p lo t t ed  i n  figure 1 together with two theo re t i ca l  curves and t h e  
experimental data taken from f igure 8 of reference 9 and Prom reference 12. 
The data found by t h e  opt ica l - re f lec t iv i ty  method as taken from refer- 
ence 11 and a l s o  p lo t ted  i n  f igure  1 do not agree with t h e  same data 
p l o t t e d  i n  figure 8 of reference 9. 
ent  estimate of L,. 
t h e  v i scos i ty  l a w  f o r  Maxwell molecules (p a T) . 
t he  present  calculat ions lead to  a r e s u l t  not considerably d i f f e ren t  fkom 
the  Navier-Stokes curve. 

This may be due t o  a s l i g h t l y  differ- 
A l l  three o f t h e  theo re t i ca l  curves are based upon 

It is in t e re s t ing  t h a t  
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The theo re t i ca l  ve loc i ty  p ro f i l e s  through the  shock wave are shown 
i n  figure 7 of reference 9 at two i n i t i a l  Mach numbers f o r  the  Navier- 
Stokes, the  Burnett, and the  13-moment equations. 
present report  reproduces two of these p ro f i l e s ,  the  Navier-Stokes and 
the  Burnett, f o r  M i  = 1.576 
equation (104) of the  present paper. The new points  agree best with the  
Navier-Stokes p r o f i l e  as the  flow enters  the  shock wave and wfth the  
Burnett p r o f i l e  as it leaves, but  on the whole the agreement is with the  
Navier-Stokes curve. 

Figure 2 of the  

together w i t h  points  calculated from 

Finally, a comparison of t h e  shock-wave thickness i n  terms of 
upstream mean free path A i  can be made, where f o r  a Maxwell gas 

Since 

Ai/€jmw(x) i s  the product of equation (108) with equation (109). Fig- 

ure 3 i s  a comparison of t he  present calculat ion with the  experimental 
da ta  and two theo re t i ca l  curves taken from figure 9 of reference 9 and 
from references 11 and 12. 
figure 1. 

The agreement is again similar t o  t h a t  of 

W 
1 
3 
4 

The agreement of the present calculat ion with the  Navier-Stokes 
theory and with the experimental data is  probably for tu i tous ,  although 
t h e  ser ies  method of calculat ion does work better f o r  t h e  present method 
than it does f o r  the  Burnett and 13-moment equations. 
approaches a re  e s sen t i a l ly  based upon the  assumption t h a t  deviation of 
t he  flow from equilibrium is small and tha t  t he  gradients  O f  veloci ty ,  
temperature, and pressure are not large.  
down, of course, i f  E becomes too large and although E + 3 as 
M i  4 0 0 ,  one cannot be too sure  of the  convergence of the  series f o r  

E 2 1, which occurs when Mi For t he  
p r o f i l e  shown i n  f igure  2, This 
d i f f i c u l t y  can be overcome by a numerical calculat ion of the  same type 
as Sherman performed f o r  t he  Burnett equations. 
the  equations of Maxwelliam i t e r a t ion ,  or even the  exact equations of 
t r ans fe r ,  f o r  t h i s  simplest case of one-dimensional flow would not be 
much more d i f f i c u l t  than f o r  the  Burnett equations. It a l so  seems t h a t  
a type of i t e r a t ion ,  not i n  powers of p/p, but of the  method e a r l i e r  
ca l l ed  Truesdell i t e r a t ion ,  might be devised f o r  t he  shock-wave problem 
as w e l l .  

A l l  of these 

The series expansion breaks 

i s  of the order of 1.3 t o  1.4. 
E = 1.44, which is already large.  

To in tegra te  numerically 
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CONCLUDING REMARKS 

W 
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4 

Most of the present paper has been devoted t o  an exposit ion of t he  
Ikenberry-Truesdell theory of the  ideal  monatomic gas. For continuum 
and near-continuum flows t h i s  theory, following the ideas of Maxwell 
and Grad, replaces the  Boltzmann equation of c l a s s i ca l  k ine t i c  theory 
by an i n f i n i t e  number of p a r t i a l  d i f f e ren t i a l  equations i n  t h e  moments 
of the  d i s t r ibu t ion  function. Since attempts t o  solve the f u l l  Boltzmann 
equation have been hopeless, it would seem t h a t  the solut ion of t he  
problem is  thus made more accessible.  
i n f i n i t e  system of d i f f e r e n t i a l  equations may not be any easier, although 
it presents a d i f f e ren t  s o r t  of problem which could give useful  and 
rewarding r e su l t s .  

However, t h e  solut ion of an 

The equations of t r ans fe r  are independent of t h e  form of molecular 
d i s t r ibu t ion  function. The latest research on boundary conditions shows 
how a knowledge of the  d is t r ibu t ion  function i s  necessary t o  formulate 
these conditions. Hence, any properly formulated boundary conditions 
could be combined w i t h  the  equations of t r ans fe r  f o r  use i n  boundary 

t h e  basis of the solut ion of problems i n  s l i p  flow discourages aiiyor;e 
i n  t h e  use of t h e  more complicated equations of Ikenberry and Truesdell. 
More physical ins ight  i n to  such problems seems t o  be the present need. 

---  VU^^^ 1 --- pIvv-u...-. Tl-nnhl pmq However, the success of the Navier-Stokes equations as 

I n  order t o  obtain equations which do not require  any more knowledge 
of boundary values than those of the known physical var iables  of state, 
the  method of Maxwellian i t e r a t ion  was presented i n  some d e t a i l .  Another 
purpose f o r  presenting t h i s  method of i t e r a t i o n  was the correction of a 
few e r ro r s  i n  t h e  o r ig ina l  paper. The qq l i r r a t ion  of the resu l t ing  eqia- 
t ions  was made t o  as simple a flow problem a s  could be formulated and 
t h i s  w a s  t he  shock-wave problem. 
r i o r i t y  of the new equations over the Navier-Stokes equations although 
t h i s  i s  probably because a se r i e s  type of solut ion was made. Another form 
of solut ion of t h i s  problem o r  o f  some other  problem should be found 
hefore the theory i s  abandoned and might o f f e r  a f e r t i l e  f i e l d  f o r  theo- 
r e t i c a l  research. 

The r e s u l t s  d id  not indicate  any supe- 

University of Washington, 
Sea t t le ,  Wash., July 30, 1958. 
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APPENDIX A 

RELATIONS. BGlwEEN MOMENTS AND SPHERICAL MDMEDITS 

Equation (5) of t he  

- - 
P i l i e .  . . is 

text defines the  moments 

while the spherical  moments are given by equation (22) 

Taking Q = 1, c i ,  . . . , equation (Al) gives, using the  f a c t  that 
d c =  d? i n  veloci ty  space: 

Q = 1: 

since the subscript  r or s w i l l  not be wr i t ten  down when r = 0 or 
6 = 0. 

Q = C i :  

pEi = m L  ciF d g =  Pi = 0 (A4 1 

from the def in i t ion  of Y i n  equation (20). Then equations (A2) and i d  
(8) give 

"ij = p i j  + mij  (A5) 

w 
1 
3 
4 



45 . 

W 
1 
3 
4 

. 

which is the same as equation (10). The contracted form is 

Pi1 = 3P = P21 

since Yii = 0. 

Q = cicjck: 

with the contraction 

since Pijj = 0 and 

while P2ii' = + m s ,  c2ciF dc = 2qi by equation (7). 
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with the contractions 

c c ic .F ag = m Iw c2y. 1J  .F aT+ 5 BijrnIW c4F 
' i j 2 2  = m L  J 

1 = P21ij + 5 

= m j ?  cicjckc2cmF 
00 

'i jk2m 

Then 

6 .  6 (A15)  5 6 + - p  10 - -  - 
' i j k 2 m  - 'ijk2m 9 ' r r ( i j k  2m) 21 rrss(i Jk 2m) 
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4 
= cicj: 

W 
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4 

with the contraction 

pkkzzmm = ’61 

These a r e  a l l  of the relations used in this paper. 
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APPENDIX B 

To illustrate the technique of evaluating L ( Y2=l ) and ~(~2rls) 
the calculations are carried out in detail for Ygri = c%,. 

4 4 W Expression (12) for L(Q) with Q = c Yi = c ci becomes in this 1 
case 3 

The averages are given by equations (5) or (22) so 

and 

12 
= Ui,kP41k + 2P21ijk(uj,k + uk,j) + 7 p41(i'jk)uj,k 

using equation ( A l 3 ) .  Now 
2 .  uJ,k + Uk, j = 2Ejk + 7 Esjk 

Sc) 

2p2 lijk(uj,k + Uk, j) = 4P21ijkEjk 

4 
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. 

and 
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3'4 I ( i6 jk)' j, k = m 4 J i  + '4) j(ui , j  + .j,i) = 5 EP41i + 2P41jEij 

so 

"hen 

- - -  - 1 p pik,kp41 - 4 p j k , k m ~ ( c 2 y i j  + 1 3 c4tjij>F dc" 

and 

pc c c4 = m S ,  c 4 c c F dc'= m s  (c4Yij + 1 c6tjiJ)F dc" 
00 3 J i  

Hence 

which i s  the l a s t  one of equations (25) i n  the t ex t .  

"he calculat ion of C ( Y 2 4 ,  ) i s  not so simple s ince it involves 
the evaluation of the four integrals  i n  equation (13). 
toward the  end of chapter 1 of reference 6, Ikenberry and Truesdell  show 
t h a t  t h i s  co l l i s ion  in t eg ra l  can be expressed exact ly  as a polynomial i n  
the  moments, provided the  molecular model is  tha t  of Maxwellmolecules. 
I n  the process they obtain cer ta in  
which w i l l  now be used t o  evaluate 

In a long sect ion 

f o r  these  in t eg ra l s  
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Since Yi = ci and Q = = c4ci, i n  t h i s  case 
4 4 SQ = (e* ' )  ci*' + ( c ' )  ci' - (c*)4ci* - c h i  according t o  equation (17). 

Equations (18) and (19) give 
+ + +  c = w - v  

+ +I 
+ 
C Y '  = w + v 

W 
1 
3 
4 

so 

2 + c4 = 2 ( 2  + w2) + 8(? a2 
- c4 = 8(v2 + w2)(? .  i?) 

using the f a c t  t h a t  ( v ' ) ~  = v2. 

Introducing the  spherical  harmonic 

3 
Y .  . (v) = v v - 1 v2Sij 1 J  i j  3 

+ 3  
the  mean r a t e  of change i n  Q becomes with v w = v.w J j  
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The i n t eg ra l s  (13) fo r  C ( Q )  can be s p l i t  i n t o  the  four  in t eg ra l s  

Equation (7.1) of reference 6 gives a formula f o r  the  i n t e g r a l  over 
of the  spherical  harmonic YS(?) which i s  

E 

with Ps(cos p) being the  Legendre polynomial and $I = r[ - 28. Hence 

-3 
I 25r 

J 0 
SQ d€  = 16fi(v2 + W2)Vj[P2(COS 8) - 1 ] Y i j ( V )  

For the  next i n t eg ra l  t he  formula i s  a spec ia l  case of equation (7.6) 
of reference 6 o r  

I[ 

B2 = 2 5 r v L  - P2(cos $)]b dg 
d$ 

so 

kw vb dbs,'" SQ d€ = -8B2 [(v2 + w 2 ) w j Y i j ( q  + wiwjwkYjk(?)] 

= -8B2 r(v2 + w2) (? . -) w)vi - 1 v2(v2 + w 2 ) w i  
L' 3 

The last  two integrat ions over d c =  d z  and dT* = d7* require  a 
r e tu rn  t o  the o r ig ina l  var iables  c and c*. Using the  i d e n t i t i e s  

2 + +  ( c * ) ~  - c4 = 8(v2 + w ) (v  - w )  

( C * l 2  + c2 = 2 ( 2  + w2) 
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4v2 = (c*)2 - 2(2* . 2) + c2 

2vi = ci* - c i  

2 w i  = ci* + c i  

16(?. a2 = ( c * ) ~  - 2(c*)*c2 + c4 

-+ 
4w2 = (c*)2 + 2(c* 3 + c2 

1 6 A 2  = ( c * ) ~  - 4(>.  2)2 + ~ c ~ ( c * ) ~  + c4 

a f t e r  simplifying and col lec t ing  terms in t eg ra l  (B6) becomes 

s,” vb dbJ2* SQ de = -B2k(c*)4(ci* - ci) + c 4 (ci - ci*) 

0 

- c2(c*)2(ci* + c + I C2CjCj*(Ci* + Ci) 
i) 3 

1 
1 + L(C*)2CJ*Cj(Ci* 3 + C i )  + 5 Cj*Ck*CjCk(Ci+ + C i j  

-+ Multiplying t h i s  r e s u l t  by m%* and in tegra t ing  over c and 3 
gives,  since 

mS_(~*)~c~*F*d;* = m -+ 
ciF dc = P41 

ci*F*d> = ciF dc -+ = 0 

W 
1 

c 
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W 
1 

mJm( c*)2F*d2 = m l m  c2F dc" = P = 3p 
21 

-3 
*F*d? = rnL cicjF dc - - Pij  = Pij + PSij 

the co l l i s ion  in t eg ra l  

which is, w i t h  % = the  next t o  the last of equations (36). It is  

the corrected form of equation (8.101 of refereme 6 .  
c(' 
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APPENDIX c 
? 

USEFUL DERIVATIVES 

From p = RpT and pu = m, i f  t he  prime indicates  the  der iva t ive  
with respect t o  x, 

p '  p '  T '  + -  - - _ -  
P P T  

p '  u t  - + - -  - 0  
P U 

so 

Also, 

The entropy 

so 

u 'T ' T" 2 - + -  
2 U UT T 

p" - ( U ' p  ut' - -  - - -  
P U 

P "7 p = ; log  

3 T '  u' 
2 T  u 

p '  = - - + -  

w 
1 
3 
4 
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and 

The coefficient of viscosi ty  

P = K T  

so 

Then 

55 



W 
1 
3 
4. 

c 



8J 57 

REFERENCES 

1. Hirschfelder, J. O.,  Curtiss, C.  F. ,  Bird, R. B.,  and Spotz, E. L.: 
The Kinetic Theory of Gases. 
Vol. I of High Speed Aerodynamics and Jet  Propulsion, sec. B, 
ch. 5, Frederick D. Rossini, ed., Princeton Univ. Press (.Princeton), 

Thermodynamics and Physics of Matter. 

1955, PP. 192-239. 

W 
1 
3 
4 

. 

2. Hirschfelder, J. O. ,  Curtiss, C .  F., Bird, R. B., and Spotz, E. L.: 
The Transport Properties of Gases and Gaseous Mixtures. 
namics and Physics of Matter. Vol. I of High Speed Aerodynamics 
and Jet Propulsion, sec. D, Frederick D. Rossini, ed., Princeton 
Univ. Press (Princeton), 1955, pp. 339-418. 

Thermody- 

3. Patterson, G.  N.: Molecular Flow of  Gases. John Wiley & Sons, Inc., 
1956 

4. Xott-Srnith, H. M.:  A New Approach i n  the  Kinetic Theory of Gases. 
Group Rep. V-2, Lizcoln Lab., MIT, Dec. 1954. 

5. Grad, H.: On the  Kinetic Theory of Rarefied Gases. Corn. %re and 
Appl. Math., vol. 11, no. 4, Dec. 1949, pp. 331-407. 

6. Ikenberry, E., and Truesdell, C . :  On the  Pressures and the  Flux of 
Energy i n  a G a s  According t o  Maxwell's Kinetic Theory, I. Jour. 
Rational Mech. and Analysis, vol. 5, no. 1, Jan. 1956, pp. 1-54. 

7. Ikenberry, E.: A System of Homogeneoiis Spherical  Harmonics. h e r .  
Math. Monthly, vol.  62, no. 10, Dec. 1955, pp. 719-721. 

8. S t ree t ,  R .  E.: Plane Couette Flow According t o  t h e  Kinetic Theory of 
Gases. R e s .  Note 11, Convair Div., Gen. Dynamics Corp., NGV. 1957. 

9. Talbot, L., 225 Sherman, F. S.: Structure  of Weak Shock Waves i n  a 
Monatomic G a s .  NASA M u  ;2-1'!->@l, 1959. 

10. Grad, H.: The Prof i le  of a Steady Plane Shock Wave. Corn. Pure an6 
Appl. Math., vol. V, no. 3, Aug. 1952, PP. 257-300. 

11. Andersen, W .  H., and Hornig, D. F.: 
Various Gases. 
Naval R e s .  and Brown Univ., May 1958. 

Structure of Shock Fronts i n  
Tech. Rep. No. 8, Contract N-onr-56211, Office of 

12. Sherman, F. S.: A Low-Density Wind-Tunnel Study of Shock-Wave Struc- 
t u r e  and Relaxation Phenomena i n  Gases. NACA TN 3298, 1955. 



f n 
4 
I 
5 

U 

I .o 1.2 1.4 I .6 1.8 2.0 

* 

Figure 1.- Shock-wave thickness i n  terms of reference length 
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